Control Modes
- Profile Position-Velocity-Torque, Interpolated Position, Homing
- Camming, Gearing
- Indexer

Command Interface
- CANopen
- ASCII and discrete I/O
- Stepper commands
- ±10V position/velocity/torque command
- PWM velocity/torque command
- Master encoder (Gearing/Camming)

Communications
- CANopen
- RS-232

Feedback
- Digital quad A/B encoder
- Analog sin/cos incremental
- Panasonic Incremental A Format
- SSI, EnDat, Absolute A
- Tamagawa & Panasonic Absolute A
- Sanyo Denki Absolute A,
 BiSS,BiSS
- Aux. encoder
- Digital Halls

I/O
- Digital: 11 inputs, 6 outputs
- Analog: 1, 12-bit input

Dimensions: mm [in]
- 76.3 x 58.2 x 20.5 [3.01 x 2.29 x 0.81]

DESCRIPTION
Accelnet APM is a high-performance, DC powered servo drive for position, velocity, and torque control of brushless and brush motors via CANopen. Using advanced FPGA technology, the APM provides a significant reduction in the cost per node in multi-axis CANopen systems.
The APM operates as an CANopen node using the CANopen over CANopen (CoE) protocol of DSP-402 for motion control devices. Supported modes include: Profile Position-Velocity-Torque, Interpolated Position Mode (PVT), and Homing.
Command sources also include ±10V analog torque/velocity/position, PWM torque/velocity, and stepper command pulses. Feedback from a number of incremental and absolute encoders is supported.

Nine high-speed digital inputs with programmable functions are provided, and a low-speed input for motor temperature switches. An SLI (Switch & LED Interface) function is supported by another high-speed input and four high-speed digital outputs. If not used for SLI, the input and outputs are programmable for other functions. Two open-drain MOSFET outputs can drive loads powered up to 24 Vdc.
An RS-232 serial port provides a connection to Copley’s CME2 software for commissioning, firmware upgrading, and saving configurations to flash memory.
Drive power is transformer-isolated DC from regulated or unregulated power supplies. An AuxHV input is provided for “keep-alive” operation permitting the drive power stage to be completely powered down without losing position information, or communications with the control system.
GENERAL SPECIFICATIONS

Test conditions: Load = Wye connected load: 2 mH + 2 Ω line-line. Ambient temperature = 25°C, +HV = HV_{max}

<table>
<thead>
<tr>
<th>MODEL</th>
<th>APM-090-06</th>
<th>APM-090-14</th>
<th>APM-090-30</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT POWER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Current</td>
<td>6</td>
<td>14</td>
<td>30</td>
<td>A, DC, sinusoidal</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>10</td>
<td>21</td>
<td>A, RMS, sinusoidal</td>
</tr>
<tr>
<td>Peak time</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>s, Sec</td>
</tr>
<tr>
<td>Continuous current</td>
<td>3</td>
<td>7</td>
<td>15</td>
<td>A, DC, sinusoidal</td>
</tr>
<tr>
<td>Camming</td>
<td>2.1</td>
<td>5</td>
<td>10.6</td>
<td>A, RMS, sinusoidal</td>
</tr>
<tr>
<td>Maximum Output Voltage</td>
<td>V, V_{out} = HV0.97 - RoutI_{out}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INPUT POWER

<table>
<thead>
<tr>
<th></th>
<th>HV_{min}~HV_{max}</th>
<th>14 to +90</th>
<th>14 to +90</th>
<th>14 to +90</th>
<th>V, DC, transformer-isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{peak}</td>
<td>6</td>
<td>14</td>
<td>14</td>
<td>30</td>
<td>A, For 1 sec</td>
</tr>
<tr>
<td>I_{cont}</td>
<td>3</td>
<td>7</td>
<td>15</td>
<td>15</td>
<td>A, Continuous</td>
</tr>
<tr>
<td>Aux HV</td>
<td>+14 to +HV_ {Vdc} @ 500 mA, maximum, 2.5 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PWM OUTPUTS

Type: 3-phase MOSFET inverter, 16 kHz center-weighted PWM, space-vector modulation

PWM ripple frequency: 32 kHz

CONTROL MODES

CANopen: Profile Position/Velocity/Torque, Interpolated Position (PVT), Homing
Analog ±10 Vdc, velocity/torque
Digital PWM, velocity/torque and stepper commands
Discrete I/O: camming, internal indexer and function generator

COMMAND INPUTS

Type: CANopen, galvanically isolated from drive circuits
Signals: CAN_H, CAN_L, CAN_GND
Data protocol: CANopen Device Profile DSP-402 over CANopen (CoE)
Node-ID Selection: Programmable, or via digital inputs
Analog: ±10 Vdc, torque/velocity/position control
Digital: High speed inputs for PWM/Polarity, Step/Direction, or Quad A/B master encoder
Camming: Quad A/B digital encoder

DIGITAL CONTROL

Digital Control Loops: Current, velocity, position. 100% digital loop control
Sampling rate (time): Current loop: 16 kHz (62.5 µs), Velocity & position loops: 4 kHz (250 µs)
Commutation: Sinusoidal, field-oriented control for brushless motors
Modulation: Center-weighted PWM with space-vector modulation
Bandwidth: Current loop: 2.5 kHz typical, bandwidth will vary with tuning & load inductance
HV Compensation: Changes in bus voltage do not affect bandwidth
Minimum load inductance: 200 µH line-line

DIGITAL INPUTS

Number, type: 11, 74LV14 Schmitt trigger; V_{+} = 1.1~2.2 Vdc, V_{-} = 0.8~1.5 Vdc, V_{+} = 0.3~0.45 Vdc
[IN1~9] High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +5 Vdc, +7 Vdc tolerant
[IN10] SLI port MISO input, 47 ns RC filter, 10 kΩ pull-up to +5 Vdc
[IN11] Motor temperature switch, 330 µs RC filter, 4.99 kΩ pull-up to +5 Vdc
Functions: Default functions are shown above, programmable to other functions

ANALOG INPUTS

Number: 1
Type: Differential, ±10 Vdc, 12-bit resolution, 5 kΩ input impedance

ANALOG OUTPUTS

Number: 6, function programmable (defaults shown below)

Functions: Default functions are shown above, programmable to other functions
FEEDBACK

Incremental encoders:
- Digital Incremental Encoder
 - Quadrate signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required)
 - RS-422 differential line receivers, 5 MHz maximum line frequency (20 M counts/sec)
 - Fault detection for open/shorted inputs, or low signal amplitude, external 121Ω terminators required
- Analog Incremental Encoder
 - Sin/Cos, differential, internal 121Ω terminators between 4 inputs, 1.0 Vp-p typical, 1.45 Vp-p maximum,
 - Common-mode voltage 0.25 to 3.75 Vdc, ±0.25 V, centered about 2.5 Vdc
 - Signals: Sin(+), Sin(-), Cos(+), Cos(-)
 - Frequency: 230 kHz maximum line (cycle) frequency, interpolation 12 bits/cycle (4096 counts/cycle)

Analog Absolute encoders:
- Heidenhain EnDat 2.2, SSI
 - Serial Clock (X, /X), Data (S, /S) signals, differential 4-wire, external 121Ω terminator required for Data
 - Internal 121Ω terminators between sin/cos inputs, external 121Ω terminator required for Data
- Absolute A, Tamagawa Absolute A, Panasonic Absolute A Format
 - Digital Incremental Encoder
 - Phase U, V, W
 - Protocol: ASCII or Binary format
 - Signals: Sin(+), Sin(-), Cos(+), Cos(-)

Commutation:
- Digital Hall signals, single-ended, 1.5 μs RC filter, 15 kΩ pull-up to +5 Vdc, 74LV14 Schmitt trigger
 +5 Vdc ±2% @ 400 mAdc max, current limited to 750 mAdc @ +1 Vdc if output overloaded

Motor CONNECTIONS

- RS-232 PORT
 - Signals: RxD, TxD, Gnd for operation as a DTE device
 - Mode: Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud
 - Protocol: ASCII or Binary format

PROTECTIONS

- HV Overvoltage
 - +HV > HVmax
 - Drive outputs turn off until +HV < HVmax (See Input Power for HVmax)
- HV Undervoltage
 - +HV < +14 Vdc
 - Drive outputs turn off until +HV > +14 Vdc
- Drive over temperature
 - Heat plate > 70°C.
 - Drive outputs turn off
- Short circuits
 - Output to output, output to ground, internal PWM bridge faults
- I2T Current limiting
 - Programmable: continuous current, peak current, peak time
- Motor over temperature
 - Digital inputs programmable to detect motor temperature switch
- Feedback Loss
 - Inadequate analog encoder amplitude or missing incremental encoder signals

MECHANICAL & ENVIRONMENTAL

- Size: 76.3 x 58.2 x 20.5 [3.01 x 2.29 x 0.81]
- Weight: 0.27 lb (0.12 kg) without heatsink
- Ambient temperature: 0 to +45°C operating, -40 to +85°C storage
- Humidity: 0 to 95%, non-condensing
- Vibration: 2 g peak, 10~500 Hz (sine), IEC60068-2-6
- Shock: 10 g, 10 ms, half-sine pulse, IEC60068-2-27
- Contaminants: Pollution degree 2
- Environment: IEC68-2-1990
- Cooling: Heat sink and/or forced air cooling required for continuous power output

AGENCY STANDARDS CONFORMANCE

In accordance with EC Directive 2004/108/EC (EMC Directive)
 - Industrial, Scientific, and Medical (ISM) Radio Frequency Equipment –
 - Electromagnetic Disturbance Characteristics – Limits and Methods of Measurement
 - Group 1, Class A
- EN 61000-6-1: 2007
 - Electromagnetic Compatibility (EMC) – Part 6-1: Generic Standards –
 - Immunity for residential, Commercial and Light-industrial Environments

In accordance with EC Directive 2006/95/EC (Low Voltage Directive)
- IEC 61010-1:2001
 - Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use
- Underwriters Laboratory Standards
- UL 61010-1, 2nd Ed.: 2008
 - Electrical Equipment for Measurement, Control and Laboratory Use;
 - Part 1: General Requirements
- UL File Number E249894
CANOPEN

Based on the CAN V2.0b physical layer, a robust, two-wire communication bus originally designed for automotive use where low-cost and noise-immunity are essential, CANopen adds support for motion-control devices and command synchronization. The result is a highly effective combination of data-rate and low cost for multi-axis motion control systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card.

CANOPEN COMMUNICATION

Accelnet uses the CAN physical layer signals CANH, CANL, and GND for connection, and CANopen protocol for communication. Before installing the drive in a CAN system, it must be assigned a CAN Node-ID (address). A maximum of 127 CAN nodes are allowed on a single CAN bus. Up to seven digital inputs can be used to produce CAN Node-IDs from 1~127, or the Node-ID can be saved to flash memory in the module. Node-ID 0 is reserved for the CANopen master on the network. For more information on CANopen communications, download the CANopen Manual from the Copley web-site: CANopen Manual.

DIGITAL COMMAND INPUTS

The graphic below shows connections between the APM and a Dsub 9M connector on a CAN card. If the APM is the last node on a CAN bus, the internal terminator resistor can be used by adding a connection on the PC board as shown. The node Node-ID of the APM may be set by using digital inputs, or programmed into flash memory in the drive.

RS-232 COMMUNICATIONS

APM is configured via a three-wire, full-duplex DTE RS-232 port that operates from 9600 to 115,200 Baud, 8 bits, no parity, and one stop bit. Signal format is full-duplex, 3-wire, DTE using RxD, TxD, and Gnd. Connections to the APM RS-232 port are through P2. The graphic below shows the connections between an APM and a computer COM port which is a DTE device.
COMMAND INPUTS

ANALOG COMMAND INPUT
The analog input has a ±10 Vdc range. As a reference input it can take position/velocity/torque commands from a controller.

DIGITAL COMMAND INPUTS
Digital commands are single-ended format and should be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs. The active edge (rising or falling) is programmable for the Pulse/Dir and CU/CD formats.

DIGITAL POSITION

PULSE & DIRECTION

CU/CD

QUAD A/B ENCODER

CME2 -> Basic Setup -> Operating Mode Options

Operating Mode: Position
Command Source: Digital Input

CME2 -> Basic Setup -> Operating Mode Options

Control Input:
- Pulse and Direction
- Pulse Up / Pulse Down
- Quadrature

Increment Position on:
- Rising Edge
- Falling Edge

Stepping Resolution
Input Pulses = 1 Output Counts

Digital commands are single-ended format and should be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs. The active edge (rising or falling) is programmable for the Pulse/Dir and CU/CD formats.

DIGITAL TORQUE, VELOCITY

PWM & DIRECTION

CME2 -> Basic Setup -> Operating Mode Options

Operating Mode: velocity
Command Source: Pwm Command

50% PWM

CME2 -> Main Page-> PWM Command

Scaling: 0 rpm at 100% duty cycle

Input Type:
- 50% Duty Cycle
- 100% Duty Cycle

Enable Deadband
Enable 100% Output

Options:
- Invert PWM Input
- Deadband
- 100% Output
INPUT-OUTPUT

HIGH SPEED DIGITAL INPUTS

7V tolerant

DIGITAL OUTPUTS

30V max

5V max

CAN NODE-ID (ADDRESS) SWITCHES

The SLI (Switch & LED Interface) port takes in the 8 signals from the two BCD encoded switches that set the CAN Node-ID and controls the LEDs on the CAN bus connectors on the Development Kit.

The graphic below shows the circuit for reading the CANopen Node-ID switches.

The 74HC165 works as a parallel-in/serial-out device.

The 10k pull-down resistors pull the shift register inputs to ground when the APM is initializing.

In the graphics below, switch SW13 is “S1” and SW12 is “S2”. The values of S1 are 16~255 and of S2 are 0~15.

Together they provide Node-ID range of 0~255.

CME2 -> Input/Output -> Digital Outputs

![Use Switch and LED Interface (SLI)]("Use Switch and LED Interface (SLI)."

<table>
<thead>
<tr>
<th>SLI Signals</th>
<th>74HC165</th>
<th>74LVC2G14</th>
<th>74LVC14</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V</td>
<td>+5V</td>
<td>+5V</td>
<td>+5V</td>
</tr>
<tr>
<td>1k</td>
<td>1k</td>
<td>1k</td>
<td>1k</td>
</tr>
<tr>
<td>PS/26, 27</td>
<td>PS/18, 19</td>
<td>PS/30, 31</td>
<td>PS/16, 17</td>
</tr>
<tr>
<td>Sgnd</td>
<td>Sgnd</td>
<td>Sgnd</td>
<td>Sgnd</td>
</tr>
<tr>
<td>P2/15, 17~26</td>
<td>P2/18, 19</td>
<td>P2/30, 31</td>
<td>P2/16, 33, 34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input</th>
<th>P2 Pin</th>
<th>R1</th>
<th>R2</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1</td>
<td>15</td>
<td>10k</td>
<td>1k</td>
<td>100p</td>
</tr>
<tr>
<td>IN2</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN3</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN4</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN5</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN6</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN7</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN8</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN9</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN10</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN11</td>
<td>25</td>
<td>4.99k</td>
<td>10k</td>
<td>33n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

External circuit for CANopen Node-ID (address) switches
MOTOR CONNECTIONS

Motor connections consist of: phases, Halls, encoder, thermal sensor, and brake. The phase connections carry the drive output currents that drive the motor to produce motion. The Hall signals are three digital signals that give absolute position feedback within an electrical commutation cycle. The encoder signals give incremental position feedback and are used for velocity and position modes, as well as sinusoidal commutation. A thermal sensor that indicates motor overtemperature is used to shut down the drive to protect the motor. A brake can provide a fail-safe way to prevent movement of the motor when the drive is shut-down or disabled.

QUAD A/B INCREMENTAL ENCODER WITH FAULT PROTECTION

Encoders with differential line-driver outputs provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark. The MAX3097 receiver has differential inputs with fault protections for the following conditions:

- **Short-circuits line-line:** This produces a near-zero voltage between A & /A which is below the differential fault threshold.
- **Open-circuit condition:** The 121Ω terminator resistor will pull the inputs together if either side (or both) is open. This will produce the same fault condition as a short-circuit across the inputs.
- **Low differential voltage detection:** This is possible with very long cable runs and a fault will occur if the differential input voltage is < 200mV.
- **±15kV ESD protection:** The 3097E has protection against high-voltage discharges using the Human Body Model.
- **Extended common-mode range:** A fault occurs if the input common-mode voltage is outside of the range of -10V to +13.2V.

If encoder fault detection is selected (CME2 main page, Configure Faults block, Feedback Error) and an encoder with no index is used, then the X and /X inputs must be wired as shown below to prevent the unused index input from generating an error for low differential voltage detection.

DIGITAL QUADRATURE ENCODER INPUT

5V

A/B CONNECTIONS (NO INDEX)

- **Encoder connections:**
 - A
 - B
 - Z
 - +5V
 - 0V

Module connections:

- P2/6
- P2/7
- P2/8
- P2/10
- P2/14
- P2/16
- 5V ENC
- SgnD

* 121Ω terminating resistors on user's PC board

CME2 -> Motor/Feedback -> Feedback

Motor Encoder: Primary Incremental
MOTOR CONNECTIONS (CONT’D)

SECONDARY QUAD A/B/X INCREMENTAL ENCODER

Digital inputs [IN4,5,6] can be programmed as secondary encoder inputs. The graphic shows a differential line receiver on the user mounting board to convert typical encoder signals into single-ended ones for the secondary inputs. Single-ended encoders would connect directly to the inputs of the APM.

CME2 -> Basic Setup -> Feedback Options

The CME2 screen above shows a Primary Incremental encoder for the motor input. Other types of encoders can be selected for this function. The secondary encoder input can be used for either motor or position feedback.

ANALOG SIN/COS INCREMENTAL ENCODER

The sin/cos inputs are differential with 121 Ω terminating resistors and accept 1 Vp-p signals in the format used by incremental encoders with analog outputs, or with ServoTube motors.

CME2 -> Motor/Feedback -> Feedback

The graphic shows an analog sin/cos incremental encoder connection.
PANASONIC INCREMENTAL A ENCODER
This is a “wire-saving” incremental encoder that sends serial data on a two-wire interface in the same fashion as an absolute encoder.

CME2 -> Basic setup -> Feedback
- Bits: 17
- Counts per rev: 10000

ABSOLUTE A ENCODER, TAMAGAWA, AND PANASONIC

CME2 -> Motor/Feedback -> Feedback
- Bits: 17 = 131072 counts per rev
- Number of Revolutions: 65536 turns
- Number of Counts Per Rev Bits to Ignore: 0
- Bit Rate: 2 MB/s, 1 MB/s, Zero Encoder

SSI ABSOLUTE ENCODER
The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The Accelnet drive provides a train of clock signals in differential format (Clk, /Clk) to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable. Data from the encoder in differential format (Dat, /Dat) MSB first. Binary or Gray encoding is selectable. When the LSB goes high and a dwell time has elapsed, data is ready to be read again.
ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals for synchronous digital, bidirectional data transfer. It also supports analog sin/cos channels from the same encoder. The number of position data bits is programmable. Use of sin/cos incremental signals is optional in the EnDat specification.

BISS (B & C) ABSOLUTE ENCODER
MOTOR CONNECTIONS (CONT’D)

DIGITAL HALL SIGNALS
Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutation-initialization after startup, and for checking the motor phasing after the servo drive has switched to sinusoidal commutation.

HALL INPUTS 5V

PHASE CONNECTIONS
The drive output is a three-phase PWM inverter that converts the DC bus voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal (J2-1) for best results. When driving a DC motor, the W output is unused and the motor connects between the U & V outputs.

MOTOR OVER TEMP INPUT
The 4.99k pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987 (table below), or switches that open/close indicating a motor over-temperature condition. The active level is programmable.

<table>
<thead>
<tr>
<th>Property</th>
<th>Ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance in the temperature range 20°C to +70°C</td>
<td>60~750</td>
</tr>
<tr>
<td>Resistance at 85°C</td>
<td>≤1650</td>
</tr>
<tr>
<td>Resistance at 95°C</td>
<td>≥3990</td>
</tr>
<tr>
<td>Resistance at 105°C</td>
<td>≥12000</td>
</tr>
</tbody>
</table>

CME2 -> Basic Setup -> Motor Options

Motor Family:
- Brushless
- Brush

CME2 -> Input / Output

[INS] Motor Temp-HL Disable
Notes:
1. Encoders with this type of connection include BiSS and SSI.
CONNECTIONS FOR INCREMENTAL DIGITAL OR ANALOG ENCODERS

Drive

P1

- P1/1,2,3,4,5,6 CAN_GND
- P1/9 CAN_H
- P1/7 CAN_L
- P1/8 TERM
- P1/10,11,12, 13,14,15,16 CAN_GND

Mot. Controller

- Enable
- D/A 10V

Position Commands

<table>
<thead>
<tr>
<th>CU</th>
<th>Step ENC Ch. B</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Dir ENC Ch. A</td>
</tr>
</tbody>
</table>

- Velocity, Torque commands
- PWM 50%
- Dir n.c.

Controller

- RS-232 I/O
- RxD
- TxD
- Gnd

- P2/2 TxD
- P2/1 RxD
- P2/16

- P2/24 [IN8] HS
- P2/23 [IN9] HS
- P2/22 [IN6] HS
- P2/21 [IN7] HS
- P2/20 [IN4] HS
- P2/19 [IN5] HS

- P2/18 [IN2] HS
- P2/17 [IN3] HS
- P2/16 [IN2] HS
- P2/15 [IN1] HS
- P2/14 [IN1] HS
- P2/13 [IN1] HS
- P2/12 [IN1] HS
- P2/11 [IN1] HS

- Enc A P2/6
- Enc JA P2/5
- Enc B P2/8
- Enc /B P2/7
- Enc X P2/10
- Enc /X P2/9
- Enc S P2/4
- Enc JS P2/3
- Enc Sin(+)+ P2/39
- Enc Sin(-) P2/38
- Enc Cos(+)+ P2/37
- Enc Cos(-) P2/36

- +5V P2/14
- +10V P2/33

- Hall U P2/11
- Hall V P2/13
- Hall W P2/12

- Mot P1/17,18,19
- Mot P1/21,21,22
- Mot P1/27,28,29
- Mot P1/37,38,39

- V P1/30,31,32
- U P1/40,41,42
- Aux HV Input P1/8

- J1

- 330 µF Minimum per drive
- Mount external capacitor 4” (10 cm) from drive

- 121Ω terminating resistors on user’s PCB board

- Digital Encoder

- Analog Encoder

- Halls

- Brushless Motor

- DC Power

- +24V

- Fuse

- Accelnet Plus Module CANopen

- APM RoHS

Note: Brush motors connect to U & V outputs

Mount external capacitor 4” (10 cm) from drive

Copley Controls, 20 Dan Road, Canton, MA 02021, USA
Web: www.copleycontrols.com
Tel: 781-828-8090 Fax: 781-828-6547
Page 13 of 26
P1 POWER & MOTOR

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>+HV</td>
<td>2</td>
<td>+HV</td>
</tr>
<tr>
<td>+HV</td>
<td>4</td>
<td>+HV</td>
</tr>
<tr>
<td>+HV</td>
<td>6</td>
<td>+HV</td>
</tr>
<tr>
<td>Aux HV</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>HVGnd</td>
<td>10</td>
<td>HVGnd</td>
</tr>
<tr>
<td>HVGnd</td>
<td>12</td>
<td>HVGnd</td>
</tr>
<tr>
<td>HVGnd</td>
<td>14</td>
<td>HVGnd</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Mot W</td>
<td>18</td>
<td>Mot W</td>
</tr>
<tr>
<td>Mot W</td>
<td>20</td>
<td>Mot W</td>
</tr>
<tr>
<td>Mot W</td>
<td>22</td>
<td>Mot W</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Mot V</td>
<td>28</td>
<td>Mot V</td>
</tr>
<tr>
<td>Mot V</td>
<td>30</td>
<td>Mot V</td>
</tr>
<tr>
<td>Mot V</td>
<td>32</td>
<td>Mot V</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Mot U</td>
<td>38</td>
<td>Mot U</td>
</tr>
<tr>
<td>Mot U</td>
<td>40</td>
<td>Mot U</td>
</tr>
<tr>
<td>Mot U</td>
<td>42</td>
<td>Mot U</td>
</tr>
</tbody>
</table>

Notes:

1. P1 connections use multiple pins to share current. All signals of the same name must be connected on the PC board to which the APM is mounted.
2. Cells in table above that are filled in grey are connector contacts that have no circuit connections.

P2 CONTROL

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232 TxD</td>
<td>2</td>
<td>RS-232 RxD</td>
</tr>
<tr>
<td>Enc S</td>
<td>4</td>
<td>Enc /S</td>
</tr>
<tr>
<td>Enc A</td>
<td>6</td>
<td>Enc /A</td>
</tr>
<tr>
<td>Enc B</td>
<td>8</td>
<td>Enc /B</td>
</tr>
<tr>
<td>Enc X</td>
<td>10</td>
<td>Enc /X</td>
</tr>
<tr>
<td>Hall W</td>
<td>12</td>
<td>Hall U</td>
</tr>
<tr>
<td>+5V ENC</td>
<td>14</td>
<td>Hall V</td>
</tr>
<tr>
<td>Sgnd</td>
<td>16</td>
<td>[IN1] HS</td>
</tr>
<tr>
<td>HS [IN2]</td>
<td>18</td>
<td>[IN3] HS</td>
</tr>
<tr>
<td>HS [IN4]</td>
<td>20</td>
<td>[IN5] HS</td>
</tr>
<tr>
<td>HS [IN6]</td>
<td>22</td>
<td>[IN7] HS</td>
</tr>
<tr>
<td>HS [IN8]</td>
<td>24</td>
<td>[IN9] HS</td>
</tr>
<tr>
<td>[OUT6]</td>
<td>28</td>
<td>[OUT5] SLI-SS1</td>
</tr>
<tr>
<td>MOSFET [OUT2]</td>
<td>32</td>
<td>[OUT1] MOSFET</td>
</tr>
<tr>
<td>Sgnd</td>
<td>34</td>
<td>Sgnd</td>
</tr>
<tr>
<td>Ref(-)</td>
<td>36</td>
<td>Ref(+)</td>
</tr>
<tr>
<td>Enc Cos(-)</td>
<td>38</td>
<td>Enc Cos(+)</td>
</tr>
<tr>
<td>Enc Sin(-)</td>
<td>40</td>
<td>Enc Sin(+)</td>
</tr>
</tbody>
</table>

Notes:

- P2: Control
- Dual row, 2 mm- centers
- 40 position female header
- SAMTEC SQW-120-01-L-D

P3 CANOPEN

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN_GND</td>
<td>2</td>
<td>CAN_GND</td>
</tr>
<tr>
<td>CAN_GND</td>
<td>4</td>
<td>CAN_GND</td>
</tr>
<tr>
<td>CAN_GND</td>
<td>6</td>
<td>CAN_GND</td>
</tr>
<tr>
<td>Term</td>
<td>8</td>
<td>CAN_L</td>
</tr>
<tr>
<td>CAN_GND</td>
<td>10</td>
<td>CAN_H</td>
</tr>
<tr>
<td>CAN_GND</td>
<td>12</td>
<td>CAN_GND</td>
</tr>
<tr>
<td>CAN_GND</td>
<td>14</td>
<td>CAN_GND</td>
</tr>
<tr>
<td>CAN_GND</td>
<td>16</td>
<td>CAN_GND</td>
</tr>
</tbody>
</table>

Notes:

- P3: CANopen
- Open signals
- SAMTEC SQW-121-01-L-D
Notes
1. J1 signals of the same name must be connected for current-sharing (see graphic above).
2. To determine copper width and thickness for J3 signals refer to specification IPC-2221.
 (Association Connecting Electronic Industries, http://www.ipc.org)
3. Standoffs or mounting screws should connect to etch on pc board that connect to frame ground
 for maximum noise suppression and immunity.
DESCRIPTION
The Development Kit provides mounting and connectivity for one APM drive. Solderless jumpers ease configuration of inputs and outputs to support their programmable functions. Switches can be jumpered to connect to digital inputs 1~11 so that these can be toggled to simulate equipment operation. Six LED’s provide status indication for the digital outputs. Dual CANopen connectors make daisy-chain connections possible so that other CANopen devices such as Copley’s Accelnet Plus or Xenus Plus CANopen drives can easily be connected.

RS-232 CONNECTION
The RS-232 port is used to configure the drive for stand-alone applications, or for configuration before it is installed into an CANopen network. CME 2™ software communicates with the drive over this link and is then used for complete drive setup. The CANopen Slave Node-ID that is set by the rotary switch can be monitored, and a Node-ID offset programmed as well.

The RS-232 connector, J9, is a modular RJ-11 type that uses a 6-position plug, four wires of which are used for RS-232. A connector kit is available (SER-CK) that includes the modular cable, and an adaptor to interface this cable with a 9-pin RS-232 port on a computer.

SER-CK SERIAL CABLE KIT
The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector J9 on the Development Kit. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the Development Kit. The connections are shown in the diagram below.
CANOPEN CONNECTORS

Dual RJ-45 connectors that accept standard Ethernet cables are provided for CAN bus connectivity. Pins are wired-through so that drives can be daisy-chained and controlled with a single connection to the user’s CAN interface. A CAN terminator should be placed in the last drive in the chain. The APM-NK connector kit provides a D-Sub adapter that plugs into a CAN controller and has an RJ-45 socket that accepts the Ethernet cable.

APK-NK CAN CONNECTOR KIT

The kit contains the XTL-CV adapter that converts the CAN interface D-Sub 9M connector to an RJ-45 Ethernet cable plus, a 10 ft (3 m) RJ-45 cable and terminator. Both connector pin-outs conform to the CiA DR-303-1 specification.

INDICATORS (LEDs)

The AMP LED on J9 shows the operational state of the APM. The STATUS LED on J9 shows the state of the CANopen NMT (Network Management) state-machine in the drive. LEDs on J10 show activity on the CANopen network. Details on the NMT state-machine can be found in the CANopen Programmers Manual, §3.1: http://www.copleycontrols.com/Motion/pdf/CANopenProgrammersManual.pdf

AMP LED

A single bi-color LED gives the state of the APM by changing color, and either blinking or remaining solid. The possible color and blink combinations are:

- **Green/Solid:** Drive OK and enabled. Will run in response to reference inputs or CANopen commands.
- **Green/Slow-Blinking:** Drive OK but NOT-enabled. Will change to Green/Solid when enabled.
- **Green/Fast-Blinking:** Positive or Negative limit switch active. Drive will only move in direction not inhibited by limit switch.
- **Red/Solid:** Transient fault condition. Drive will resume operation when fault is removed.
- **Red/Blinking:** Latching fault. Operation will not resume until drive is Reset.

Drive fault conditions. Faults are programmable to be either transient or latching:

- Over or under-voltage
- Motor over-temperature
- Encoder +5 Vdc fault
- Short-circuits from output to ground
- Drive over-temperature
- Internal short circuits
- Short-circuits from output to output

STATUS LED

A single bi-color LED gives the state of the NMT state-machine by changing color, and either blinking or remaining solid. The possible color and blink combinations are:

GREEN (RUN)

- Off
- Blinking: Pre-operative
- Single-flash: Stopped
- On: Operational

RED (ERROR)

- Off: No error
- Blinking: Invalid configuration, general configuration error
- Single Flash: Warning limit reached
- Double Flash: Error Control Event (guard or heartbeat event) has occurred
- Triple Flash: Sync message not received within the configured period
- On: Bus Off, the CAN master is bus off

ACTIVITY LEDS

- Flashing indicates the APM is sending/receiving data via the CAN port
CANOPEN NODE-ID (ADDRESS) SWITCH CONNECTIONS

The graphic below shows the connections to the CANopen Node-ID switches. These are read after the drive is reset, or powered-on. When changing the settings of the switches, be sure to either reset the drive, or to power it off-on. Outputs [OUT3,4,5] and input [IN10] operate as an SLI (Switch & LED Interface) port which reads the settings on the CANopen Node-ID switches, and controls the LEDs on the serial and CANopen port connectors.

The jumpers marked with red "X" should be removed so that SW10, or external connections to the signals do not interfere with the operation of the SLI port.

5V POWER SOURCES

The feedback connector J7 has connections for two power supplies:

- Pin 6 has +5V supplied by the APM module
- Pin 17 connects to jumper J4 for the selection of the 5V power source:
 - On J4, when the jumper connects pins 2 & 3, the power source is the APM internal supply (the default setting)
 - When the jumper is on pins 1 & 2, the power source comes from an external power supply connecting to J5-1.

5V power on the Development Kit that comes from the selectable 5V power source on J4 is labeled “5V SEL”.

Circuits powered by 5V supplied only by the APM are labeled “5V APM”.

The jumpers marked with red “X” should be removed so that SW18, or external connections to the signals do not interfere with the operation of the SLI port.
LOGIC OUTPUTS

There are six logic outputs that can drive controller logic inputs or relays. If relays are driven, then flyback diodes must be connected across their terminals to clamp overvoltages that occur when the inductance of the relay coil is suddenly turned off. Outputs 3, 4, 5 & 6 are CMOS types that pull up to 5V or down to ground. When these outputs go high it turns on the green LED. When they are low, the red LED is turned on. Outputs 1 & 2 are MOSFET types that sink current when ON, and appear as open-circuit when OFF. When these outputs are ON a red LED is turned on. When the outputs are OFF, the red LED is off. The green LED is not used on these outputs.
MOTOR FEEDBACK CONNECTOR J7

For motors with differential encoders: install jumpers JP1B, JP1D, JP1F, and JP1H to connect 121 ohm terminators across inputs

Jumpers JP1A, JP1C, JP1E, and JP1G do not affect this setting and may remain in place or be removed.

For motors with single-ended encoders: remove jumpers JP1B, JP1D, JP1F, and JP1H to disconnect 121 ohm terminators

Install jumpers JP1A, JP1C, JP1E, and JP1G

A motor temperature sensor that connects to [IN11] must have jumper JP4F installed and JP3C removed to prevent switch SW11 from grounding the Motemp [IN11] signal.

If the encoder has a fault output, then jumper JP4H must be in place and jumper JP3A must be removed to prevent switch SW9 from grounding the Enc Fault [IN9] signal.

Absolute encoders such as the Nikon A type that use 2-wire bidirectional signals require biasing the lines when they are in a quiescent state. Jumpers JP1G, JP1H, and JP6A must be in place to provide line termination and biasing.

LED’s are provided to show the status of the encoder and Hall signals.
Notes:
1. CANopen connectors J10 are not shown here. For details see pp 4 & 13.
DEVELOPMENT KIT

The Development Kit mounts a single APM module and enables the user to test and operate the APM before it is mounted onto a PC board in the target system.

J5 AUX HV & EXT 5V

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V Ext</td>
<td>1</td>
</tr>
<tr>
<td>Gnd</td>
<td>2</td>
</tr>
<tr>
<td>Gnd</td>
<td>3</td>
</tr>
<tr>
<td>Aux HV Input</td>
<td>4</td>
</tr>
</tbody>
</table>

J6 MOTOR

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>+HV Input</td>
<td>1</td>
</tr>
<tr>
<td>HV Gnd</td>
<td>2</td>
</tr>
<tr>
<td>Motor W</td>
<td>3</td>
</tr>
<tr>
<td>Motor V</td>
<td>4</td>
</tr>
<tr>
<td>Motor U</td>
<td>5</td>
</tr>
</tbody>
</table>

J7 FEEDBACK

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Signal Gnd</td>
</tr>
<tr>
<td>25</td>
<td>Signal Gnd</td>
</tr>
<tr>
<td>24</td>
<td>[IN9] Enc Fault*</td>
</tr>
<tr>
<td>23</td>
<td>n.c.</td>
</tr>
<tr>
<td>22</td>
<td>n.c.</td>
</tr>
<tr>
<td>21</td>
<td>Cos(+)</td>
</tr>
<tr>
<td>20</td>
<td>Cos(-)</td>
</tr>
<tr>
<td>19</td>
<td>Sin(+)</td>
</tr>
<tr>
<td>18</td>
<td>Sin(-)</td>
</tr>
<tr>
<td>17</td>
<td>+5 Vdc Out</td>
</tr>
<tr>
<td>16</td>
<td>Signal Gnd</td>
</tr>
<tr>
<td>15</td>
<td>Enc S</td>
</tr>
<tr>
<td>14</td>
<td>Enc /S</td>
</tr>
<tr>
<td>13</td>
<td>Enc A</td>
</tr>
<tr>
<td>12</td>
<td>Enc /A</td>
</tr>
<tr>
<td>11</td>
<td>Enc B</td>
</tr>
<tr>
<td>10</td>
<td>Enc /B</td>
</tr>
<tr>
<td>9</td>
<td>Enc X</td>
</tr>
<tr>
<td>8</td>
<td>Enc /X</td>
</tr>
<tr>
<td>7</td>
<td>[IN11] Motemp*</td>
</tr>
<tr>
<td>6</td>
<td>+5 Vdc Out</td>
</tr>
<tr>
<td>5</td>
<td>Signal Gnd</td>
</tr>
<tr>
<td>4</td>
<td>Hall W</td>
</tr>
<tr>
<td>3</td>
<td>Hall V</td>
</tr>
<tr>
<td>2</td>
<td>Hall U</td>
</tr>
<tr>
<td>1</td>
<td>Frame Gnd</td>
</tr>
</tbody>
</table>

* Signal connections on the PC board are affected by jumper placement
J11 CAN NETWORK TERMINATOR

<table>
<thead>
<tr>
<th>Pins</th>
<th>Function</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Terminator ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>Terminator OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J10 CANOPEN

Pin Signal

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAN_H</td>
</tr>
<tr>
<td>2</td>
<td>CAN_L</td>
</tr>
<tr>
<td>3</td>
<td>CAN_GND</td>
</tr>
<tr>
<td>4</td>
<td>Pass-thru</td>
</tr>
<tr>
<td>5</td>
<td>Pass-thru</td>
</tr>
<tr>
<td>6</td>
<td>Pass-thru</td>
</tr>
<tr>
<td>7</td>
<td>CAN_GND</td>
</tr>
<tr>
<td>8</td>
<td>Pass-thru</td>
</tr>
</tbody>
</table>

J9 RS-232

Pin Signal

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n.c.</td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
</tr>
<tr>
<td>3</td>
<td>Sgnd</td>
</tr>
<tr>
<td>4</td>
<td>Sgnd</td>
</tr>
<tr>
<td>5</td>
<td>TxD</td>
</tr>
<tr>
<td>6</td>
<td>n.c.</td>
</tr>
</tbody>
</table>

J8 CONTROL

Pin Signal

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>PIN</th>
<th>SIGNAL</th>
<th>PIN</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frame Gnd</td>
<td>9</td>
<td>n.c.</td>
<td>10</td>
<td>[IN6] HS*</td>
</tr>
<tr>
<td>2</td>
<td>[AIN+]</td>
<td>8</td>
<td>[IN5] HS*</td>
<td>11</td>
<td>n.c.</td>
</tr>
<tr>
<td>3</td>
<td>[AIN-]</td>
<td>7</td>
<td>[IN4] HS*</td>
<td>12</td>
<td>n.c.</td>
</tr>
<tr>
<td>4</td>
<td>[IN1] HS*</td>
<td>6</td>
<td>[IN3] HS*</td>
<td>13</td>
<td>n.c.</td>
</tr>
<tr>
<td>5</td>
<td>[IN2] HS*</td>
<td>5</td>
<td>[IN2] HS*</td>
<td>14</td>
<td>n.c.</td>
</tr>
<tr>
<td>6</td>
<td>[IN1] HS*</td>
<td>4</td>
<td>[IN1] HS*</td>
<td>15</td>
<td>Signal Gnd</td>
</tr>
<tr>
<td>7</td>
<td>[IN3] HS*</td>
<td>3</td>
<td>[AIN-]</td>
<td>16</td>
<td>[OUT1]</td>
</tr>
<tr>
<td>8</td>
<td>[IN4] HS*</td>
<td>2</td>
<td>[AIN+]</td>
<td>17</td>
<td>[OUT2]</td>
</tr>
<tr>
<td>9</td>
<td>n.c.</td>
<td>1</td>
<td>Frame Gnd</td>
<td>18</td>
<td>[OUT3] MOSI*</td>
</tr>
<tr>
<td>10</td>
<td>[IN6] HS*</td>
<td>11</td>
<td>n.c.</td>
<td>19</td>
<td>Signal Gnd</td>
</tr>
<tr>
<td>11</td>
<td>n.c.</td>
<td>12</td>
<td>n.c.</td>
<td>20</td>
<td>+5 Vdc Out</td>
</tr>
<tr>
<td>12</td>
<td>n.c.</td>
<td>13</td>
<td>n.c.</td>
<td>21</td>
<td>[OUT6]</td>
</tr>
<tr>
<td>13</td>
<td>n.c.</td>
<td>14</td>
<td>n.c.</td>
<td>22</td>
<td>[OUT5] SS1*</td>
</tr>
<tr>
<td>14</td>
<td>n.c.</td>
<td>15</td>
<td>Signal Gnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Signal Gnd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>[OUT1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>[OUT2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>[OUT3] MOSI*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Signal Gnd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>+5 Vdc Out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
POWER DISSIPATION

The charts on this page show the drive’s internal power dissipation for different models under differing power supply and output current conditions. Drive output current is calculated from the motion profile, motor, and load conditions. The values on the chart represent the rms (root-mean-square) current that the drive would provide during operation. The +HV values are for the average DC voltage of the drive power supply.

To see if a heatsink is required or not, the next step is to determine the temperature rise the drive will experience when it’s installed. For example, if the ambient temperature in the drive enclosure is 40 °C, and the heatplate temperature is to be limited to 70° C or less to avoid shutdown, the maximum rise would be 70C - 40C. or 30° C. Dividing this dissipation by the thermal resistance of 9º C/W with no heatsink gives a dissipation of 3.33W. This line is shown in the charts. For power dissipation below this line, no heatsink is required. The vertical dashed line shows the continuous current rating for the drive model.

HEATSINK INSTALLATION USING THE APM-HK HEATSINK KIT

An AOS Micro Faze thermal pad is used in place of thermal grease. This material comes in sheet form and changes from solid to liquid form as the drive warms up. This forms an excellent thermal path from drive heatplate to heatsink for optimum heat transfer.

STEPS TO INSTALL

1. Remove the thermal pad from the clear plastic carrier.
2. Place the thermal pad on the Accelnet aluminum heatplate taking care to center the thermal pad holes over the holes in the drive body.
3. Mount the heatsink onto the thermal pad again taking care to see that the holes in the heatsink, thermal pad, and drive all line up.
4. Torque the #4-40 mounting screws to 3~5 lb-in (0.34~0.57 N·m).
Rth expresses the rise in temperature of the drive per Watt of internal power loss. The units of Rth are °C/W, where the °C represent the rise above ambient in degrees Celsius. The data below show thermal resistances under convection, or fan-cooled conditions for the no-heatsink, and APM-HS heatsink.

NO HEATSINK

NO HEATSINK

<table>
<thead>
<tr>
<th>Mode</th>
<th>C/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convection</td>
<td>9.1</td>
</tr>
<tr>
<td>Forced Air (300 LFM)</td>
<td>3.3</td>
</tr>
</tbody>
</table>

STANDARD HEATSINK (APM-HK)

WITH HEATSINK

<table>
<thead>
<tr>
<th>Mode</th>
<th>C/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convection</td>
<td>5.3</td>
</tr>
<tr>
<td>Forced Air (300 LFM)</td>
<td>1.1</td>
</tr>
</tbody>
</table>
ACCESSORIES

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connector, Euro, 5 Terminal, 5.08 mm</td>
</tr>
<tr>
<td>1</td>
<td>Connector, Euro, 4 Terminal, 5.08 mm</td>
</tr>
<tr>
<td>1</td>
<td>26 Pin Connector, High Density, D-Sub, Male, Solder Cup</td>
</tr>
<tr>
<td>2</td>
<td>26 Pin Connector, High Density, D-Sub, Female, Solder Cup</td>
</tr>
<tr>
<td>1</td>
<td>26 Pin Connector Backshell</td>
</tr>
<tr>
<td>1</td>
<td>Adapter Assy, DB9 Female to RJ45 Jack (APK-CV)</td>
</tr>
<tr>
<td>1</td>
<td>CANopen Network Cable, 10 ft. (APK-NC-10)</td>
</tr>
<tr>
<td>1</td>
<td>CANopen Network Terminator (APK-NT)</td>
</tr>
<tr>
<td>1</td>
<td>Heatsink for APM</td>
</tr>
<tr>
<td>1</td>
<td>Heatsink Thermal Pad</td>
</tr>
<tr>
<td>2</td>
<td>Screws, #4/40 x 1.25”, SEMS</td>
</tr>
<tr>
<td></td>
<td>Adapter Assembly, DB9 Female to RJ45 Jack</td>
</tr>
<tr>
<td></td>
<td>CANopen Network Cable, 10 ft</td>
</tr>
<tr>
<td></td>
<td>CANopen network cable, 1 ft</td>
</tr>
<tr>
<td></td>
<td>CANopen Network Terminator</td>
</tr>
<tr>
<td></td>
<td>CME 2 Drive Configuration Software on CD-ROM</td>
</tr>
<tr>
<td></td>
<td>Serial Cable Kit</td>
</tr>
</tbody>
</table>

DIMENSIONS

Dimensions: mm [in]

- Width: 76.3 [3.01]
- Height: 58.2 [2.29]
- Depth: 20.5 ±0.25 [0.81 ±0.010]
- Width: 43.7 [1.72]
- Height: 26.8 ±0.25 [1.06 ±0.010]
- Height: 6.35 [0.25]
- Width: 16.9 [0.67]

Note: Specifications subject to change without notice

Rev 11.03-tu 05/11/2015